Sparse Packetized Predictive Control for Networked Control over Erasure Channels by Masaaki Nagahara, Daniel E. Quevedo, Jan Ostergaard
We study feedback control over erasure channels with packet-dropouts. To achieve robustness with respect to packet-dropouts, the controller transmits data packets containing plant input predictions, which minimize a finite horizon cost function. To reduce the data size of packets, we propose to adopt sparsity-promoting optimizations, namely, ell-1-ell-2 and ell-2-constrained ell-0 optimizations, for which efficient algorithms exist. We derive sufficient conditions on design parameters, which guarantee (practical) stability of the resulting feedback control systems when the number of consecutive packet-dropouts is bounded.
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.
No comments:
Post a Comment