Showing posts with label recherche. Show all posts
Showing posts with label recherche. Show all posts

Tuesday, January 08, 2008

France: Efficacite des transferts de technologie ?

[Today I am going to post in French on an issue of technology transfer in France that I feel is not working well.]

On parle souvent de compétitivité de l'industrie francaise mais rarement du transfert de connaissance de la recherche a l'industrie. Il semble que ce transfert soit moins qu'optimal pour etre gentil. Je pensais faire un post long, mais non, donc voila:

Quelque chose m'embete et je ne comprends pas. Albert Fert, prix Nobel 2007 est a l'origine de la découverte de la Magnétorésistance géante en 1988 qui a ouvert la voie aux disques durs a grande capacité. Comment cela fait il qu'aucune entreprise francaise ne soit leader dans la confection de disques durs ? Je comprends que dans certains pays on puisse produire certains produits a bas prix mais la raison intrinseque de l'existence de brevet est de pouvoir protéger l'inventeur pendant quelque temps de facon a faire evoluer une découverte ou une idée en un produit. Comment cela se fait-il que personne en France n'ait essayé de prendre avantage de cette découverte ?

Peut-on et doit-on rapprocher cette question a une autre question: La disparition de chercheurs aventureux au sein de l'industrie francaise ? Je ne sais pas.

A not so good translation of this entry can be found here.

Graph source : Wikipedia

Tuesday, July 03, 2007

Influence des Chercheurs Francais: La derniere generation.

Nick Trefethen essaie de faire des statistiques sur les chercheurs qui ont le plus influences les mathematiques appliquees qui sont elles-memes a l'origine du development exponentiel des sciences depuis deux siecles. C'est une presentation de tout les chercheurs tres influents toutes nationalites confondues. Il y a tres peu de francais:
Il n'y a pas Stephane Mallat ou Emmanuel Candes dans la liste finale (bien que Mallat soit dans le reste de la presentation). Pour Candes, la liste est un peu vieille. Trefethen essaie de tirer des grandes lignes de l'environement de ces chercheurs (toute nationalites confondues) et il nous dit:

"...The inventors were/are almost all academic mathematicians
  • Most were extremely eminent
  • Their great discoveries came at all ages
  • About half had major involvements with government or industry (That’s big industry—AT&T, IBM, Boeing, etc.— and big government labs like Argonne, Harwell, NPL)
  • Most were seriously involved with applications
  • It’s hard to disentangle the effects of WWII.."

Il est interessant de voir que des travaux importants ont ete fait par des gens de tout ages. C'est un fait tres notable parce que il y a beaucoup de prix ou autres filieres qui sont en France et a l'etranger restrictive par rapport a l'age (medaille Fields, entree a Normale Sup,...) Pour ce qui est des francais, on peut voir trois generations differentes:
  • Legendre, il y a deux siecles
  • Bezier, De CastelJau et Morlet qui ont fait partie de grandes entreprises francaises apres la deuxieme guerre mondiale. Ils sont tous decedes.
  • Saad n'est pas francais (il est etranger dans le sens ou il n'a pas fait sa scolarite secondaire en France et donc n'a pu etre detecte par le systeme des prepas) mais il est passe par le systeme universitaire francais pour continuer sa carriere aux U.S. Candes fait sa carriere aux U.S. Mallat a evolue aux U.S. et est revenu en france et a cree une entreprise qui utilise la technologie qu'il a develope pendant ses recherches les plus recentes. (pour la petite histoire, Mallat relate son histoire pour le developement de technologies innovates en France dans : Tribune Libre sur la Recherche et l'Innovation, Gazette des Mathematiciens of the SMF, no. 121, July 2009. pdf)
Si l'on s'en tient au critere de la liste de Trefethen a la fin de sa presentation Mallat et Candes ne sont pas la, en partie parce que la liste commence a date. Il n'y donc guere que la generation qui se trouvait au sein des grandes entreprises qui ait pu influencer la science a ses yeux. Il y a un fait troublant:: Jean Morlet en particulier a ete mis a la retraite car, apres le scandale des avions renifleurs, ELF ne voulait plus etre vu comme trop innovant. Yves Meyer en parle dans son tribu a Morlet:
Morlet's scientific vision was decisive for the success of wavelet analysis. But as Pierre Goupillaud is telling us, this had no effect on Morlet's career at the Elf-Aquitaine company. In fact Morlet's only reward for years of perseverance and creativity in producing this extraordinary tool was an early retirement.
Etre innovant cela veut aussi dire que l'on peut se planter. Au vu de la date de l'affaire (1978-1983), on peut se demander si elle n'est pas revelatrice de la fin de tout paris d'innovation dans ces grandes entreprises avec l'arrivee d'un management beaucoup plus frileux et donc la cessation de toute production de chercheurs qui aient une influence mondiale. Le modele de recherche et developement au sein des grandes entreprises nationales ne semble donc plus etre reellement innovant. Si un passage aux U.S. semble etre une condition essentielle pour avoir une influence definitive sur son champs de recherche, il serait peut etre importun de songer a cree une dynamique similaire en France. Bien que Polytechnique fasse son boulot pour identifier les jeunes qui sont les plus de prometteurs, le systeme actuel echoue apres la sortie de l'ecole meme pour ceux-la. Ils sont donc obliges de passer par le systeme americain qui est exceptionel au niveau Bac + 4 et plus. Comme les grandes entreprises francaises ne sont plus la pour assurer la place qu'elles avaient en recherche, le systeme actuel ne fait plus reellement aussi aucune place a ce que l'on appelle aux U.S. des "late bloomers", ceux qui "murrisent" plus tard mais qui ont un impact au moins aussi important.

Tuesday, June 12, 2007

France: Technologies de rupture et quantification de la maturite d'une technologie.


Lors de ma visite au Salon Europeen de la recherche, j'ai parle avec certaines personnes de OSEO, anciennement ANVAR (plus une autre entite dont je ne me rappelle plus le nom). Lors de la discussion, nous sommes arrives au sujet des baremes/echelles qui sont utilises en France de facon a quantifier le niveau de maturite d'une technologie. C'est important car du point de vue programmatique, les administrations et autres donneurs d'ordres prives doivent etre capable de dire aux chercheurs leurs besoins dans des termes qui sont simples. Cela permet de ne pas perdre son temps sur des technologies qui ne sont pas avancees ou qui le sont trop. Il semble que ce processus d'identification se fait au sein d'OSEO grace a l'utilisation d'experts. C'est interessant mais ce n'est pas le plus important. Il y a beaucoup de technologies que meme les experts ne peuvent juger correctement soit de par leur formation ou a cause d'une connaissance trop profonde des choses qui se font maintenant dans leur domaine. Il y a un vrai risque que nous passions, en France, a cote de technologies de rupture. Bien que ce mot soit a la mode, il est utilise, avec en tete, la definition de Clayton Christensen qui a defini le concept avec son livre "The Innovator's Dilemna" dont le premier chapitre se trouve ici. En resume, les technologies de rupture sont souvent des technologies que les experts ne considerent pas comme viable mais qui est capable d'avoir des parts de marche tres importantes dans des marches "exotiques". Cela leur permet de survivre et de s'affiner jusqu'au jour ou elles supplantent les technologies qui sont deja sur les marches plus traditionnels.

Pour en revenir a l'evaluation des technologies, il y a ce qu'on appelle le niveau de maturite d'une technologie, ou ce que l'on appelle en Americain: Technology Readiness Level (TRL). C'est un concept qui permet aux decideurs techniques, economiques et politiques de mieux cerner les differents niveaux d'avancement ou de maturite de certaines technologies de facon a permettre de repondre a certains besoins. Par exemple, la NASA ne finance en ce moment que des technologies de niveau TRL 8 a 9 pour une majorite de systemes qui iront sur la station spatiale alors que la NSF est dans le financement de technologies de niveaux TRL 1 a 4 (au maximum). Ce tableau est issue d'une traduction de l'entree de TRL sur wikipedia que j'ai modifie (je ne suis pas expert en traduction donc je suis ouvert a tout changement). Il est assez recent et a ete compose par John Mankins parcequ'il y avait beaucoup de confusion au sein de la NASA sur le choix des technologies a developer.

Niveaux de maturite des technologies a la NASA (Source : Mankins (1995), niveaux de maturite des technologies : Un livre blanc)
Niveau de maturite des technologie Description
TRL 1. Principes de base observés et rapportés C'est le « niveau le plus bas » de maturite d'une technologie. À ce niveau, la recherche scientifique commence à être traduite en recherche et développement appliqués.

This is the lowest "level" of technology maturation. At this level, scientific research begins to be translated into applied research and development.
TRL 2. Concept et/ou application de technologie formulés Une fois qu'on observe les principes physiques de base de cette technologie, des applications pratiques de ces caractéristiques peuvent « être inventées » ou identifiées au prochain niveau de maturite. À ce niveau, l'application de la technologie est encore spéculative : il n'y a pas de preuve expérimentale ou d'analyse détaillée pour soutenir la conjecture.

Once basic physical principles are observed, then at the next level of maturation, practical applications of those characteristics can be 'invented' or identified. At this level, the application is still speculative: there is not experimental proof or detailed analysis to support the conjecture.
TRL 3. Fonction critique analytique et expérimentale et/ou preuve caractéristique du concept À cette étape dans le processus de maturation, la recherche et le développement actifs (R&D) sont lancés. Ceci doit inclure des études analytiques pour placer la technologie dans un contexte approprié et des études en laboratoire pour valider physiquement que les prévisions analytiques sont correctes. Ces études et expériences devraient constituer la preuve de la validation des applications et des concepts formulés niveau precedent (TRL 2).

At this step in the maturation process, active research and development (R&D) is initiated. This must include both analytical studies to set the technology into an appropriate context and laboratory-based studies to physically validate that the analytical predictions are correct. These studies and experiments should constitute "proof-of-concept" validation of the applications/concepts formulated at TRL 2.
TRL 4. Validation de composant et/ou en prototype dans l'environnement du laboratoire Après avoir valider les applications et les concepts formules au niveau TRL2, des éléments technologiques de base doivent être intégrés de facon a établir que chacun des « morceaux » de la technologie travailleront bien ensemble. Ceci afin de documenter et prouver des niveaux de performance d'un composant et/ou d'un prototype. Cette validation doit être conçue pour soutenir le concept qui a été formulé plus tôt, et devrait également adherer aux conditions des applications potentielles de système. La validation est relativement de « basse fidélité » comparée au système final : elle pourrait se composer de composants mis en place ensemble dans un laboratoire.

Following successful "proof-of-concept" work, basic technological elements must be integrated to establish that the "pieces" will work together to achieve concept-enabling levels of performance for a component and/or breadboard. This validation must be devised to support the concept that was formulated earlier, and should also be consistent with the requirements of potential system applications. The validation is relatively "low-fidelity" compared to the eventual system: it could be composed of ad hoc discrete components in a laboratory.
TRL 5. Validation de composant et/ou du prototype dans l'environnement approprié À ce niveau de maturite, la fidélité du composant et/ou du prototype au produit final doit avoir augmenter de manière significative. Les éléments technologiques de base doivent être intégrés avec des éléments de support raisonnablement réalistes de sorte que toutes les applications (niveau composant, niveau de sous-ensemble, ou niveau système) puissent être examinées dans un environnement « simulé » ou quelque peu réaliste.

At this level, the fidelity of the component and/or breadboard being tested has to increase significantly. The basic technological elements must be integrated with reasonably realistic supporting elements so that the total applications (component-level, sub-system level, or system-level) can be tested in a 'simulated' or somewhat realistic environment.
6. Système/modèle de sous-ensemble ou démonstration de prototype dans un environnement approprié (sur terre ou dans l'espace) Une étape importante au niveau de la fidélité de la démonstration de la technologie suit l'accomplissement du niveau TRL 5. Au niveau TRL 6, un système représentatif de modèle ou de prototype ou du système - qui dépasseraient bien un agencement ad hoc de composants ou un prototype avec des composants simple non integres - serait examinée dans un environnement approprié. À ce niveau, si le seul « environnement approprié » est l'environnement de l'espace, alors le modèle/prototype doit être démontré dans l'espace.

A major step in the level of fidelity of the technology demonstration follows the completion of TRL 5. At TRL 6, a representative model or prototype system or system - which would go well beyond ad hoc, 'patch-cord' or discrete component level breadboarding - would be tested in a relevant environment. At this level, if the only 'relevant environment' is the environment of space, then the model/prototype must be demonstrated in space.
TRL7. Démonstration de prototype de système dans un environnement de l'espace Le niveau TRL 7 est une étape significative au delà du niveau TRL 6, qui exige une démonstration réelle de prototype de système dans un environnement de l'espace. Le prototype devrait être près d'un niveau opérationnel et la démonstration de cette technologie doit avoir lieu dans l'espace.

TRL 7 is a significant step beyond TRL 6, requiring an actual system prototype demonstration in a space environment. The prototype should be near or at the scale of the planned operational system and the demonstration must take place in space.
TRL8. Système réel accompli et « vol qualifié » par l'essai et la démonstration (sur la terre ou dans l'espace) Dans presque tous les cas, ce niveau est la fin du « développement d'un système technologique» pour la plupart des éléments de cette technologie. Ce niveau pourrait etre l'intégration de cette nouvelle technologie dans un système existant.

In almost all cases, this level is the end of true 'system development' for most technology elements. This might include integration of new technology into an existing system.
TRL9. Système réel « vol prouvé » par des opérations réussies de mission Dans presque tous les cas, la fin des aspects de réparation de dernier « bogue » du « développement du systeme technologique » final. Ce niveau pourrait inclure l'intégration de cette nouvelle technologie dans un système existant. Ce niveau de maturite n'inclut pas l'amélioration des systèmes en operation ou réutilisables.

In almost all cases, the end of last 'bug fixing' aspects of true 'system development'. This might include integration of new technology into an existing system. This TRL does not include planned product improvement of ongoing or reusable systems.


Il y a un tableau similaire pour l'armee (Air Force).

[ PS: Bien que cette table existe depuis 1995 et est utilise au sein de la NASA depuis 1998, il se trouve que les administrations et organismes d'etats francais commencent seulement a l'utiliser: Exemple les recentes traductions du CNES ou dans le document 2006 de la politique et objectifs scientifiques de la DGA


]

Printfriendly