Universum Prescription: Regularization using Unlabeled Data
Xiang Zhang (New York University);
Yann LeCun (New York University);
Infinite-Label Learning with Semantic Output Codes
Yang Zhang (University of Central Florida);
Rupam Acharyya (University of Rochester);
Ji Liu (University of Rochester);
Boqing Gong (University of Central Florida);
Query-Efficient Imitation Learning for End-to-End Autonomous Driving
Jiakai Zhang (NYU);
Kyunghyun Cho (NYU);
Leveraging Video Descriptions to Learn Video Question Answering
Kuo-Hao Zeng (Stanford University);
Tseng-Hung Chen (National Tsing Hua University);
Ching-Yao Chuang (National Tsing Hua University);
Yuan-Hong Liao (National Tsing Hua University);
Juan Carlos Niebles (Stanford University);
Min Sun (National Tsing Hua University);
Joint Dimensionality Reduction for Two Feature Vectors
Yanjun Li (UIUC);
Yoram Bresler (UIUC);
Reweighted Data for Robust Probabilistic Models
Yixin Wang (Columbia University);
Alp Kucukelbir (Columbia University);
David M. Blei (Columbia University);
Learning Sparse, Distributed Representations using the Hebbian Principle
Aseem Wadhwa (University of California Santa Barbara);
Upamanyu Madhow (University of California Santa Barbara);
Diverse Beam Search: Decoding Diverse Sequences from Neural Sequence Models
Ashwin K. Vijayakumar (Virginia Tech);
Michael Cogswell (Virginia Tech);
Ramprasaath R. Selvaraju (Virginia Tech);
Qing Sun (Virginia Tech);
Stefan Lee (Virginia Tech);
David Crandall (Indiana University);
Dhruv Batra (Virginia Tech);
Generalizing the Convolution Operator to Extend CNNs to Irregular Domains
Jean-Charles Vialatte (Cityzen Data, Telecom Bretagne);
Vincent Gripon (Telecom Bretagne);
Grégoire Mercier (Telecom Bretagne);
Sifting Common Information from Many Variables
Greg Ver Steeg (USC);
Shuyang Gao (USC);
Kyle Reing (USC);
Aram Galstyan (USC);
Reducing the error of Monte Carlo Algorithms by Learning Control Variates
Brendan Tracey (MIT, Santa Fe Institute);
David Wolpert (Santa Fe Institute, ASU);
Recoverability of Joint Distribution from Missing Data
Jin Tian (Iowa State University);
Convergence rate of stochastic k-means
Cheng Tang (George Washington University);
Claire Monteleoni (George Washington University);
Clustering with a Reject Option: Interactive Clustering as Bayesian Prior Elicitation
Akash Srivastava (Informatics Forum, University of Edinburgh);
James Zou (Microsoft Research and Stanford University);
Charles Sutton (Informatics Forum, University of Edinburgh);
Scalable and Sustainable Deep Learning via Randomized Hashing
Ryan Spring (Rice University);
Anshumali Shrivastava (Rice University);
Higher Order Recurrent Neural Networks
Rohollah Soltani (York University);
Hui Jiang (York University);
Differentially Private Gaussian Processes
Michael Thomas Smith (University of Sheffield);
Max Zwiessele (University of Sheffield);
Neil D. Lawrence (University of Sheffield);
ProjE: Embedding Projection for Knowledge Graph Completion
Baoxu Shi (University of Notre Dame);
Tim Weninger (University of Notre Dame);
Exploring Semantic Correspondence in Deep Convolutional Neural Networks
Zhiqiang Shen (Fudan University);
Xiangyang Xue (Fudan University);
A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues
Iulian Vlad Serban (University of Montreal);
Alessandro Sordoni (University of Montreal);
Ryan Lowe (McGill University);
Laurent Charlin (McGill University);
Joelle Pineau (McGill University);
Aaron Courville (University of Montreal);
Yoshua Bengio (University of Montreal);
Grad-CAM: Why did you say that? Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju (Virginia Tech);
Abhishek Das (Virginia Tech);
Ramakrishna Vedantam (Virginia Tech);
Michael Cogswell (Virginia Tech);
Devi Parikh (Georgia Tech);
Dhruv Batra (Georgia Tech);
Learning activation functions from data using cubic spline interpolation
Simone Scardapane (Sapienza University of Rome);
Michele Scarpiniti (Sapienza University of Rome);
Danilo Comminiello (Sapienza University of Rome);
Aurelio Uncini (Sapienza University of Rome);
Action Classification via Concepts and Attributes
Amir Rosenfeld (Weizmann Institute of Science);
Shimon Ullman (Weizmann Institute of Science);
On numerical approximation schemes for expectation propagation
Alexis Roche (CHUV);
Differential response of the retinal neural code with respect to the sparseness of natural images
Cesar Ravello (CINV);
Maria-Jose Escobar (Univ Tecnico Federico Santa María);
Adrian Palacios (CINV);
Laurent U. Perrinet (INT);
A Latent-Variable Lattice Model
Rajasekaran Masatran (IIT Madras);
On Enumerating Stable Configurations of Cellular Automata with the MAJORITY update rule
Predrag T. Tosic;
Holistic SparseCNN: Forging the Trident of Accuracy, Speed, and Size
Jongsoo Park (Intel Corporation);
Sheng R. Li (Intel Corporation);
Wei Wen (University of Pittsburgh);
Hai Li (University of Pittsburgh);
Yiran Chen (University of Pittsburgh);
Pradeep Dubey (Intel Corporation);
DropNeuron: An Approach for Simplifying the Structure of Deep Neural Networks
Wei Pan;
Hao Dong;
Yike Guo;
Herding Generalizes Diverse M-Best Solutions
Ece Ozkan;
Gemma Roig;
Orcun Goksel;
Xavier Boix;
Practical optimal experiment design with probabilistic programs
Long Ouyang (Stanford);
Michael Henry Tessler (Stanford);
Daniel Ly (Stanford);
Noah D. Goodman (Stanford);
Word2Vec is a special case of Kernel Correspondence Analysis and Kernels for Natural Language Processing
Hirotaka Niitsuma;
Minho Lee;
Neural Semantic Encoders
Tsendsuren Munkhdalai (University of Massachusetts);
Hong Yu (University of Massachusetts);
Neural Sampling by Irregular Gating Inhibition of Spiking Neurons and Attractor Networks
Lorenz K. Muller (Institute of Neuroinformatics, ETH Zurich and University of Zurich);
Giacomo Indiveri (Institute of Neuroinformatics, ETH Zurich and University of Zurich);
Node-Adapt, Path-Adapt and Tree-Adapt: Model-Transfer Domain Adaptation for Random Forest
Azadeh S. Mozafari (Computer Engineering Department, Sharif university of Technology);
David Vazquez (Computer Vision Center, UAB University);
Mansour Jamzad (Computer Engineering Department, Sharif university of Technology);
Antonio M. Lopez (Computer Vision Center, UAB University);
Inductive quantum learning: Why you are doing it almost right
Alex Monràs (Universitat Autònoma de Barcelona);
Gael Sentís (Universidad del País Vasco);
Peter Wittek (ICFO-The Institute of Photonic Sciences);
Adversarial Training Methods for Semi-Supervised Text Classification
Takeru Miyato (Kyoto Univ., Google Brain);
Andrew M. Dai (Google Brain);
Ian Goodfellow (OpenAI);
The Oesomeric model: giving Space to Reinforcement Learning Temporal Models
Pierre Michaud (IPC);
Learning from Binary Labels with Instance-Dependent Corruption
Aditya Krishna Menon (Data61);
Brendan van Rooyen (QUT);
Nagarajan Natarajan (MSR Bangalore);
A Modular Theory of Feature Learning
Daniel McNamara (Australian National University and Data61);
Cheng Soon Ong (Australian National University and Data61);
Robert C. Williamson (Australian National University and Data61;);
A Marginal-Based Technique for Distribution Estimation
Rajasekaran Masatran (IIT Madras);
Exploring and measuring non-linear correlations: Copulas, Lightspeed Transportation and Clustering
Gautier Marti (Hellebore Capital Ltd);
Sébastien Andler (ENS de Lyon);
Frank Nielsen (Ecole Polytechnique);
Philippe Donnat (Hellebore Capital Ltd);
Quantifying the probable approximation error of probabilistic inference programs
Marco F. Cusumano-Towner (MIT);
Vikash K. Mansinghka (MIT);
A performance-based approach to design the stimulus presentation paradigm for the P300-based BCI
Boyla Mainsah (Duke University);
Galen Reeves (Duke University);
Leslie Collins (Duke University);
Chandra Throckmorton ;
Active Search for Sparse Signals with Region Sensing
Yifei Ma (Carnegie Mellon University);
Roman Garnett (Washington University in St. Louis);
Jeff Schneider (Carnegie Mellon University);
On Minimal Accuracy Algorithm Selection in Computer Vision and Intelligent Systems
Martin Lukac (Nazarbayev University);
Kamila Abdiyeva (Nazarbayev University);
Michitaka Kameyama (Ishinomaki University);
Multiple Kernel k-means with Incomplete Kernels
Xinwang Liu (NUDT);
Miaomiao Li (NUDT);
Lei Wang (NUDT);
Yong Dou (NUDT);
Jinping Yin (NUDT);
En Zhu (NUDT);
Leveraging Union of Subspace Structure to Improve Constrained Clustering
John Lipor (University of Michigan, Ann Arbor);
Laura Balzano (University of Michigan, Ann Arbor);
Differential Covariance: A New Class of Methods to Estimate Sparse Connectivity from Neural Recordings
Tiger W. Lin (UCSD/Salk);
Anup Das (UCSD);
Giri P. Krishnan (UCSD);
Maxim Bazhenov (UCSD);
Terrence J. Sejnowski (UCSD/Salk);
Learning to Optimize
Ke Li (UC Berkeley);
Jitendra Malik (UC Berkeley);
Generalized Min-Max Kernel and Generalized Consistent Weighted Sampling
Ping Li;
Asaga: Asynchronous Parallel SAGA
Rémi Leblond (Ecole Normale Supérieure / INRIA Sierra);
Fabian Pedregosa (Ecole Normale Supérieure / INRIA Sierra);
Simon Lacoste-Julien (Department of (CS & OR DIRO) Université de Montréal);
Estimating Uncertainty Online Against an Adversary
Volodymyr Kuleshov;
Stefano Ermon;
Deep Variational Bayes Filters: Unsupervised Learning of State Space Models from Raw Data
Maximilian Karl (Technische Universität München);
Maximilian Soelch (Technische Universität München);
Justin Bayer (Data Lab, Volkswagen Group);
Patrick van der Smagt (Data Lab, Volkswagen Group);
How to scale distributed deep learning?
Peter H. Jin (UC Berkeley);
Qiaochu Yuan (UC Berkeley);
Forrest Iandola (UC Berkeley);
Kurt Keutzer (UC Berkeley);
Generating images with recurrent adversarial networks
Daniel Jiwoong Im;
Chris Dongjoo Kim;
Hui Jiang;
Roland Memisevic;
Learning Unitary Operators with Help From u(n)
Stephanie L. Hyland (ETH Zurich);
Gunnar Rätsch (ETH Zurich);
Character-Level Language Modeling with Hierarchical Recurrent Neural Networks
Kyuyeon Hwang (Seoul National University);
Wonyong Sung (Seoul National University);
Training Spiking Deep Networks for Neuromorphic Hardware
Eric Hunsberger (University of Waterloo);
Chris Eliasmith (University of Waterloo);
Fast Learning of Clusters and Topics via Sparse Posteriors
Michael C. Hughes (Brown University);
Erik B. Sudderth (Brown University);
Unsupervised Learning of Word-Sequence Representations from Scratch via Convolutional Tensor Decomposition
Furong Huang (Microsoft Research);
Animashree Anandkumar (UC Irvine);
The Shallow End: Empowering Shallower Deep-Convolutional Networks through Auxiliary Outputs
Yong Guo (South China University of Technology);
Mingkui Tan (South China University of Technology);
Qingyao Wu (South China University of Technology);
Jian Chen (South China University of Technology);
Anton Van Den Hengel (The University of Adelaide);
Qinfeng Shi (The University of Adelaide);
A Robust Adaptive Stochastic Gradient Method for Deep Learning
Caglar Gulcehre;
Jose Sotelo;
Marcin Moczulski;
Yoshua Bengio;
Faster Low-rank Approximation using Adaptive Gap-based Preconditioning
Alon Gonen (Hebrew University of Jeruslaem);
Shai Shalev-Shwartz;
One Class Splitting Criteria for Random Forests with Application to Anomaly Detection
Nicolas Goix (Télécom Paristech);
Romain Brault (Télécom Paristech);
Nicolas Drougard (ISAE);
Maël Chiapino (Télécom Paristech);
Causal inference for cloud computing
Philipp Geiger (MPI for Intelligent Systems);
Lucian Carata (Univeristy of Cambridge);
Bernhard Schölkopf (MPI for Intelligent Systems);
The Linearization of Belief Propagation on Pairwise Markov Random Fields
Wolfgang Gatterbauer (Carnegie Mellon University);
Optimal Number of Choices in Rating Contexts
Sam Ganzfried (Florida International University);
Bayesian Opponent Exploitation in Imperfect-Information Games
Sam Ganzfried (Florida International University);
Network of Bandits
Raphaël Féraud (Orange Labs);
Cognitive Discriminative Mappings for Rapid Learning
Wen-Chieh Fang;
Yi-ting Chiang;
Stochastic Patching Process
Xuhui Fan (Data61, CSIRO, Australia);
Bin Li (Data61, CSIRO, Australia);
Yi Wang (Data61, CSIRO, Australia);
Yang Wang (Data61, CSIRO, Australia);
Fang Chen (Data61, CSIRO, Australia);
Perceptual Reward Functions
Ashley Edwards (Georgia Institute of Technology);
Charles Isbell (Georgia Institute of Technology);
Atsuo Takanishi (Waseda University);
Collaborative Filtering with Recurrent Neural Networks
Robin Devooght (ULB, IRIDIA);
Hugues Bersini (ULB, IRIDIA);
Predictive Coding for Dynamic Vision: Development of Functional Hierarchy in a Multiple Spatio-Temporal Scales RNN Model
Minkyu Choi (KAIST);
Jun Tani (KAIST);
On the Optimal Sample Complexity for Best Arm Identification
Lijie Chen (Tsinghua University);
Jian Li (Tsinghua University);
Stability revisited: new generalisation bounds for the Leave-one-Out
Alain Celisse (Université de Lille);
Benjamin Guedj (Inria);
Dataflow matrix machines as programmable, dynamically expandable, self-referential generalized recurrent neural networks
Michael Bukatin (HERE North America LLC);
Steve Matthews (University of Warwick);
Andrey Radul (Project Fluid);
Crowdsourcing: Low Complexity, Minimax Optimal Algorithms
Thomas Bonald (Telecom ParisTech);
Richard Combes (Centrale-Supelec);
Scan, Attend and Read: End-to-End Handwritten Paragraph Recognition with MDLSTM Attention
Théodore Bluche (A2iA);
Jérôme Louradour (A2iA);
Ronaldo Messina (A2iA);
Convergence Rate Analysis of a Stochastic Trust Region Method for Nonconvex Optimization
Jose Blanchet (Columbia University);
Coralia Cartis (University of Oxford);
Matt Menickelly (Lehigh University);
Katya Scheinberg (Lehigh University);
Kernel regression, minimax rates and effective dimensionality: beyond the regular case
Gilles Blanchard (Potsdam University);
Nicole Mücke (Potsdam University);
Defining the Neural Code
Thomas Bangert (Queen Mary University of London);
Ebroul Izquierdo (Queen Mary University of London);
The Option-Critic Architecture
Pierre-Luc Bacon (McGill University);
Jean Harb (McGill University);
Doina Precup (McGill University);
Towards Optimality Conditions for Non-Linear Networks
Devansh Arpit (SUNY Buffalo);
Hung Q. Ngo (LogicBlox);
Yingbo Zhou (SUNY Buffalo);
Nils Napp (SUNY Buffalo);
Venu Govindaraju (SUNY Buffalo);
Improved Multi-Class Cost-Sensitive Boosting via Estimation of the Minimum-Risk Class
Ron Appel (Caltech);
Xavier Burgos-Artizzu (THX);
Pietro Perona (Caltech);
Learning Bayesian Networks with Incomplete Data by Augmentation
Tameem Adel;
Cassio P. de Campos;
Unbiased Sparse Subspace Clustering By Selective Pursuit
Hanno Ackermann (Hanover University);
Michael Yang (Twente University);
Bodo Rosenhahn (Hanover University);
Linear Thompson Sampling Revisited
Marc Abeille (Inria-Lille);
Alessandro Lazaric (Inria-Lille);
No comments:
Post a Comment