Matrix Neural Networks by Junbin Gao, Yi Guo, Zhiyong Wang
Traditional neural networks assume vectorial inputs as the network is arranged as layers of single line of computing units called neurons. This special structure requires the non-vectorial inputs such as matrices to be converted into vectors. This process can be problematic. Firstly, the spatial information among elements of the data may be lost during vectorisation. Secondly, the solution space becomes very large which demands very special treatments to the network parameters and high computational cost. To address these issues, we propose matrix neural networks (MatNet), which takes matrices directly as inputs. Each neuron senses summarised information through bilinear mapping from lower layer units in exactly the same way as the classic feed forward neural networks. Under this structure, back prorogation and gradient descent combination can be utilised to obtain network parameters efficiently. Furthermore, it can be conveniently extended for multimodal inputs. We apply MatNet to MNIST handwritten digits classification and image super resolution tasks to show its effectiveness. Without too much tweaking MatNet achieves comparable performance as the state-of-the-art methods in both tasks with considerably reduced complexity.
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.
No comments:
Post a Comment