Monday, March 02, 2015

The generalized Lasso with non-linear observations

The generalized Lasso with non-linear observations by Yaniv Plan, Roman Vershynin

We study the problem of signal estimation from non-linear observations when the signal belongs to a low-dimensional set buried in a high-dimensional space. A rough heuristic often used in practice postulates that non-linear observations may be treated as noisy linear observations, and thus the signal may be estimated using the generalized Lasso. This is appealing because of the abundance of efficient, specialized solvers for this program. Just as noise may be diminished by projecting onto the lower dimensional space, the error from modeling non-linear observations with linear observations will be greatly reduced when using the signal structure in the reconstruction. We allow general signal structure, only assuming that the signal belongs to some set K in R^n. Our theory tolerates general non-linearity, which may be discontinuous, not one-to-one and even unknown. We assume a random Gaussian model for the measurement matrix, but allow the rows to have an unknown covariance matrix. As special cases of our results, we recover near-optimal theory for noisy linear observations, and also give the first theoretical accuracy guarantee for 1-bit compressed sensing with unknown covariance matrix of the measurement vectors.  
Join the CompressiveSensing subreddit or the Google+ Community and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

No comments: