The quest for optimal sensing matrices is crucial in the design of efficient Compressed Sensing architectures. In this paper we propose a maximum entropy criterion for the design of optimal Hadamard sensing matrices (and similar deterministic ensembles) when the signal being acquired is sparse and non-white. Since the resulting design strategy entails a combinatorial step, we devise a fast evolutionary algorithm to find sensing matrices that yield high-entropy measurements. Experimental results exploiting this strategy show quality gains when performing the recovery of optimally sensed small images and electrocardiographic signals.The implementation can be found here at:
Page Views on Nuit Blanche since July 2010
Nuit Blanche community
@NuitBlog || Facebook || Reddit
Compressive Sensing on LinkedIn
Advanced Matrix Factorization on Linkedin ||
Thursday, August 21, 2014
Maximum Entropy Hadamard Sensing of Sparse and Localized Signals - implementation -
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment