Friday, August 18, 2017

Learning Transferable Architectures for Scalable Image Recognition / The Cost of Everything and the Value of Nothing


Hardmaru mentioned the following preprint: 


to what David replied eventually (see the thread)

Here are the two papers:


Developing state-of-the-art image classification models often requires significant architecture engineering and tuning. In this paper, we attempt to reduce the amount of architecture engineering by using Neural Architecture Search to learn an architectural building block on a small dataset that can be transferred to a large dataset. This approach is similar to learning the structure of a recurrent cell within a recurrent network. In our experiments, we search for the best convolutional cell on the CIFAR-10 dataset and then apply this learned cell to the ImageNet dataset by stacking together more of this cell. Although the cell is not learned directly on ImageNet, an architecture constructed from the best learned cell achieves state-of-the-art accuracy of 82.3% top-1 and 96.0% top-5 on ImageNet, which is 0.8% better in top-1 accuracy than the best human-invented architectures while having 9 billion fewer FLOPS. This cell can also be scaled down two orders of magnitude: a smaller network constructed from the best cell also achieves 74% top-1 accuracy, which is 3.1% better than the equivalently-sized, state-of-the-art models for mobile platforms.

The Cost of Everything and the Value of NothingDavid Moloney, CTO 





Join the CompressiveSensing subreddit or the Google+ Community or the Facebook page and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

No comments:

Printfriendly