Wednesday, May 17, 2017

Thesis (Honors): Improved Genomic Selection using VowpalWabbit with Random Fourier Features, Jiaqin Jaslyn Zhang

Image Credit: NASA/JPL-Caltech/Space Science Institute, Ian Regan

Combining Random Features and Vowpal Wabbit in this honors thesis. Congratulations Jiaqin !

Improved Genomic Selection using VowpalWabbit with Random Fourier Features by Jiaqin Jaslyn Zhang
Nonlinear regression models are often used in statistics and machine learning due to greater accuracy than linear models. In this work, we present a novel modeling framework that is both computationally efficient for high-dimensional datasets, and predicts more accurately than most of the classic state-of-the-art predictive models. Here, we couple a nonlinear random Fourier feature data transformation with an intrinsically fast learning algorithm called Vowpal Wabbit or VW. The key idea we develop is that by introducing nonlinear structure to an otherwise linear framework, we are able to consider all possible higher-order interactions between entries in a string. The utility of our nonlinear VW extension is examined, in some detail, under an important problem in statistical genetics: genomic selection (i.e. the prediction of phenotype from genotype). We illustrate the benefits of our method and its robustness to underlying genetic architecture on a real dataset, which includes 129 quantitative heterogeneous stock mice traits from the Wellcome Trust Centre for Human Genetics.





Join the CompressiveSensing subreddit or the Google+ Community or the Facebook page and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

No comments:

Printfriendly