Wednesday, October 21, 2015

Dual Principal Component Pursuit

Some new phase transition, now in Principal Component Pursuit:

Dual Principal Component Pursuit by Manolis C. Tsakiris, Rene Vidal

We consider the problem of outlier rejection in single subspace learning. Classical approaches work directly with a low-dimensional representation of the subspace. Our approach works with a dual representation of the subspace and hence aims to find its orthogonal complement. We pose this problem as an $\ell_1$-minimization problem on the sphere and show that, under certain conditions on the distribution of the data, any global minimizer of this non-convex problem gives a vector orthogonal to the subspace. Moreover, we show that such a vector can still be found by relaxing the non-convex problem with a sequence of linear programs. Experiments on synthetic and real data show that the proposed approach, which we call Dual Principal Component Pursuit (DPCP), outperforms state-of-the art methods, especially in the case of high-dimensional subspaces.
Join the CompressiveSensing subreddit or the Google+ Community or the Facebook page and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

No comments: