Friday, June 19, 2015

Random Features and random projections

  This is the day where we catch up with Random Features and random projections
 
On the Error of Random Fourier Features by Dougal J. Sutherland, Jeff Schneider

Kernel methods give powerful, flexible, and theoretically grounded approaches to solving many problems in machine learning. The standard approach, however, requires pairwise evaluations of a kernel function, which can lead to scalability issues for very large datasets. Rahimi and Recht (2007) suggested a popular approach to handling this problem, known as random Fourier features. The quality of this approximation, however, is not well understood. We improve the uniform error bound of that paper, as well as giving novel understandings of the embedding's variance, approximation error, and use in some machine learning methods. We also point out that surprisingly, of the two main variants of those features, the more widely used is strictly higher-variance for the Gaussian kernel and has worse bounds.
 
 
Optimal Rates for Random Fourier Features  by Bharath K. Sriperumbudur, Zoltan Szabo

Kernel methods represent one of the most powerful tools in machine learning to tackle problems expressed in terms of function values and derivatives due to their capability to represent and model complex relations. While these methods show good versatility, they are computationally intensive and have poor scalability to large data as they require operations on Gram matrices. In order to mitigate this serious computational limitation, recently randomized constructions have been proposed in the literature, which allow the application of fast linear algorithms. Random Fourier features (RFF) are among the most popular and widely applied constructions: they provide an easily computable, low-dimensional feature representation for shift-invariant kernels. Despite the popularity of RFFs, very little is understood theoretically about their approximation quality. In this paper, we provide the first detailed theoretical analysis about the approximation quality of RFFs by establishing optimal (in terms of the RFF dimension) performance guarantees in uniform and Lr (1r<) norms. We also propose a RFF approximation to derivatives of a kernel with a theoretical study on its approximation quality.

Learning with Group Invariant Features: A Kernel Perspective by Youssef Mroueh, Stephen Voinea, Tomaso Poggio

We analyze in this paper a random feature map based on a theory of invariance I-theory introduced recently. More specifically, a group invariant signal signature is obtained through cumulative distributions of group transformed random projections. Our analysis bridges invariant feature learning with kernel methods, as we show that this feature map defines an expected Haar integration kernel that is invariant to the specified group action. We show how this non-linear random feature map approximates this group invariant kernel uniformly on a set of $N$ points. Moreover, we show that it defines a function space that is dense in the equivalent Invariant Reproducing Kernel Hilbert Space. Finally, we quantify error rates of the convergence of the empirical risk minimization, as well as the reduction in the sample complexity of a learning algorithm using such an invariant representation for signal classification, in a classical supervised learning setting.

DUAL-LOCO: Distributing Statistical Estimation Using Random Projections by Christina Heinze, Brian McWilliams, Nicolai Meinshausen
We present DUAL-LOCO, a communication-efficient algorithm for distributed statistical estimation. DUAL-LOCO assumes that the data is distributed according to the features rather than the samples. It requires only a single round of communication where low-dimensional random projections are used to approximate the dependences between features available to different workers. We show that DUAL-LOCO has bounded approximation error which only depends weakly on the number of workers. We compare DUAL-LOCO against a state-of-the-art distributed optimization method on a variety of real world datasets and show that it obtains better speedups while retaining good accuracy.

Frank-Wolfe Bayesian Quadrature: Probabilistic Integration with Theoretical Guarantees by François-Xavier Briol, Chris J. Oates, Mark Girolami, Michael A. Osborne

There is renewed interest in formulating integration as an inference problem, motivated by obtaining a full distribution over numerical error that can be propagated through subsequent computation. Current methods, such as Bayesian Quadrature, demonstrate impressive empirical performance but lack theoretical analysis. An important challenge is to reconcile these probabilistic integrators with rigorous convergence guarantees. In this paper, we present the first probabilistic integrator that admits such theoretical treatment, called Frank-Wolfe Bayesian Quadrature (FWBQ). Under FWBQ, convergence to the true value of the integral is shown to be exponential and posterior contraction rates are proven to be superexponential. In simulations, FWBQ is competitive with state-of-the-art methods and out-performs alternatives based on Frank-Wolfe optimisation. Our approach is applied to successfully quantify numerical error in the solution to a challenging model choice problem in cellular biology.


Bilinear Random Projections for Locality-Sensitive Binary Codes by Saehoon Kim, Seungjin Choi

Locality-sensitive hashing (LSH) is a popular data-independent indexing method for approximate similarity search, where random projections followed by quantization hash the points from the database so as to ensure that the probability of collision is much higher for objects that are close to each other than for those that are far apart. Most of high-dimensional visual descriptors for images exhibit a natural matrix structure. When visual descriptors are represented by high-dimensional feature vectors and long binary codes are assigned, a random projection matrix requires expensive complexities in both space and time. In this paper we analyze a bilinear random projection method where feature matrices are transformed to binary codes by two smaller random projection matrices. We base our theoretical analysis on extending Raginsky and Lazebnik's result where random Fourier features are composed with random binary quantizers to form locality sensitive binary codes. To this end, we answer the following two questions: (1) whether a bilinear random projection also yields similarity-preserving binary codes; (2) whether a bilinear random projection yields performance gain or loss, compared to a large linear projection. Regarding the first question, we present upper and lower bounds on the expected Hamming distance between binary codes produced by bilinear random projections. In regards to the second question, we analyze the upper and lower bounds on covariance between two bits of binary codes, showing that the correlation between two bits is small. Numerical experiments on MNIST and Flickr45K datasets confirm the validity of our method.

Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families by Heiko Strathmann, Dino Sejdinovic, Samuel Livingstone, Zoltan Szabo, Arthur Gretton

We propose Kamiltonian Monte Carlo (KMC), a gradient-free adaptive MCMC algorithm based on Hamiltonian Monte Carlo (HMC). On target densities where HMC is unavailable due to intractable gradients, KMC adaptively learns the target's gradient structure by fitting an exponential family model in a Reproducing Kernel Hilbert Space. Computational costs are reduced by two novel efficient approximations to this gradient. While being asymptotically exact, KMC mimics HMC in terms of sampling efficiency and offers substantial mixing improvements to state-of-the-art gradient free-samplers. We support our claims with experimental studies on both toy and real-world applications, including Approximate Bayesian Computation and exact-approximate MCMC.
 
 
 
Join the CompressiveSensing subreddit or the Google+ Community and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

No comments:

Printfriendly