A Practical Guide to Randomized Matrix Computations with MATLAB Implementations by Shusen Wang

Matrix operations such as matrix inversion, eigenvalue decomposition, singular value decomposition are ubiquitous in real-world applications. Unfortunately, many of these matrix operations so time and memory expensive that they are prohibitive when the scale of data is large. In real-world applications, since the data themselves are noisy, machine-precision matrix operations are not necessary at all, and one can sacrifice a reasonable amount of accuracy for computational efficiency.

In recent years, a bunch of randomized algorithms have been devised to make matrix computations more scalable. Mahoney (2011) and Woodruff (2014) have written excellent but very technical reviews of the randomized algorithms. Differently, the focus of this manuscript is on intuitions, algorithm derivation, and implementations, and should be accessible to those with knowledge in elementary matrix algebra. The algorithms introduced in this manuscript are all summarized in a user-friendly way, and they can be implemented in lines of MATLAB code. The readers can easily follow the implementations even if they do not understand the maths and algorithms.

The tutorial page as well as the matlab implementation mentioned in the tutorial are here. This will be added to the Matrix Factorization Jungle page.

**Join the CompressiveSensing subreddit or the Google+ Community and post there !**

Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

## No comments:

Post a Comment