We study the information-theoretic limits of exactly recovering the support of a sparse signal using noisy projections defined by various classes of measurement matrices. Our analysis is high-dimensional in nature, in which the number of observations n, the ambient signal dimension p, and the signal sparsity k are all allowed to tend to infinity in a general manner. This paper makes two novel contributions. First, we provide sharper necessary conditions for exact support recovery using general (non-Gaussian) dense measurement matrices. Combined with previously known sufficient conditions, this result yields sharp characterizations of when the optimal decoder can recover a signal for various scalings of the sparsity k and sample size n, including the important special case of linear sparsity (k = ) using a linear scaling of observations (n = ). Our second contribution is to prove necessary conditions on the number of observations n required for asymptotically reliable recovery using a class of gamma-sparsified measurement matrices, where the measurement sparsity element of (0, 1] corresponds to the fraction of non-zero entries per row. Our analysis allows general scaling of the quadruplet , and reveals three different regimes, corresponding to whether measurement sparsity has no effect, a minor effect, or a dramatic effect on the information-theoretic limits of the subset recovery problem.
The conference paper version is entitled Information-theoretic limits on sparse signal recovery: Dense versus sparse measurement matrices.
Image Credit: NASA/JPL/Space Science Institute, Thieving Moon.
No comments:
Post a Comment