If group-LASSO improves compressive sensing reconstruction, why shouldn't it do the same for training nets in deep architectures. This is what today's preprint investigates. Woohoo !

Group Sparse Regularization for Deep Neural Networks by Simone Scardapane, Danilo Comminiello, Amir Hussain, Aurelio Uncini

In this paper, we consider the joint task of simultaneously optimizing (i) the weights of a deep neural network, (ii) the number of neurons for each hidden layer, and (iii) the subset of active input features (i.e., feature selection). While these problems are generally dealt with separately, we present a simple regularized formulation allowing to solve all three of them in parallel, using standard optimization routines. Specifically, we extend the group Lasso penalty (originated in the linear regression literature) in order to impose group-level sparsity on the network's connections, where each group is defined as the set of outgoing weights from a unit. Depending on the specific case, the weights can be related to an input variable, to a hidden neuron, or to a bias unit, thus performing simultaneously all the aforementioned tasks in order to obtain a compact network. We perform an extensive experimental evaluation, by comparing with classical weight decay and Lasso penalties. We show that a sparse version of the group Lasso penalty is able to achieve competitive performances, while at the same time resulting in extremely compact networks with a smaller number of input features. We evaluate both on a toy dataset for handwritten digit recognition, and on multiple realistic large-scale classification problems.

**Join the CompressiveSensing subreddit or the Google+ Community or the Facebook page and post there !**

Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

## 1 comment:

Dear Igor,

Thanks for sharing our preprint. I follow your blog since a couple of years, and I am glad this is of interest.

Simone

Post a Comment