Wednesday, June 19, 2019

Graduated Optimisation of Black-Box Functions - implementation -

** Nuit Blanche is now on Twitter: @NuitBlog **



Motivated by the problem of tuning hyperparameters in machine learning, we present a new approach for gradually and adaptively optimizing an unknown function using estimated gradients. We validate the empirical performance of the proposed idea on both low and high dimensional problems. The experimental results demonstrate the advantages of our approach for tuning high dimensional hyperparameters in machine learning. 
 The attendant implementation is here: https://github.com/christiangeissler/gradoptbenchmark



Follow @NuitBlog or join the CompressiveSensing Reddit, the Facebook page, the Compressive Sensing group on LinkedIn  or the Advanced Matrix Factorization group on LinkedIn

Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email.

Other links:
Paris Machine LearningMeetup.com||@Archives||LinkedIn||Facebook|| @ParisMLGroup< br/> About LightOnNewsletter ||@LightOnIO|| on LinkedIn || on CrunchBase || our Blog
About myselfLightOn || Google Scholar || LinkedIn ||@IgorCarron ||Homepage||ArXiv

No comments:

Printfriendly