Distributed learning and random projections are the most common techniques in large scale nonparametric statistical learning. In this paper, we study the generalization properties of kernel ridge regression using both distributed methods and random features. Theoretical analysis shows the combination remarkably reduces computational cost while preserving the optimal generalization accuracy under standard assumptions. In a benign case,O(N−−√) partitions andO(N−−√) random features are sufficient to achieveO(1/N) learning rate, whereN is the labeled sample size. Further, we derive more refined results by using additional unlabeled data to enlarge the number of partitions and by generating features in a data-dependent way to reduce the number of random features.
Follow @NuitBlog or join the CompressiveSensing Reddit, the Facebook page, the Compressive Sensing group on LinkedIn or the Advanced Matrix Factorization group on LinkedIn
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email.
Other links:
Paris Machine Learning: Meetup.com||@Archives||LinkedIn||Facebook|| @ParisMLGroup< br/> About LightOn: Newsletter ||@LightOnIO|| on LinkedIn || on CrunchBase || our Blog
About myself: LightOn || Google Scholar || LinkedIn ||@IgorCarron ||Homepage||ArXiv
No comments:
Post a Comment