Tuesday, September 27, 2016

Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network

So in previous times, people would talk about upsamling or superresolution ( see this eight year old blog entry entitled CS: Very High Speed Incoherent Projections for Superresolution, and a conference. on how it is done for HDTV) , in these times of the great convergence, CNNs come to the rescue (the second prepritn gives an explanation of one of the step of the first paper that was presented at CVPR:




Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network by Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P. Aitken, Rob Bishop, Daniel Rueckert, Zehan Wang

Recently, several models based on deep neural networks have achieved great success in terms of both reconstruction accuracy and computational performance for single image super-resolution. In these methods, the low resolution (LR) input image is upscaled to the high resolution (HR) space using a single filter, commonly bicubic interpolation, before reconstruction. This means that the super-resolution (SR) operation is performed in HR space. We demonstrate that this is sub-optimal and adds computational complexity. In this paper, we present the first convolutional neural network (CNN) capable of real-time SR of 1080p videos on a single K2 GPU. To achieve this, we propose a novel CNN architecture where the feature maps are extracted in the LR space. In addition, we introduce an efficient sub-pixel convolution layer which learns an array of upscaling filters to upscale the final LR feature maps into the HR output. By doing so, we effectively replace the handcrafted bicubic filter in the SR pipeline with more complex upscaling filters specifically trained for each feature map, whilst also reducing the computational complexity of the overall SR operation. We evaluate the proposed approach using images and videos from publicly available datasets and show that it performs significantly better (+0.15dB on Images and +0.39dB on Videos) and is an order of magnitude faster than previous CNN-based methods.


Is the deconvolution layer the same as a convolutional layer? by Wenzhe Shi, Jose Caballero, Lucas Theis, Ferenc Huszar, Andrew Aitken, Christian Ledig, Zehan Wang

In this note, we want to focus on aspects related to two questions most people asked us at CVPR about the network we presented. Firstly, What is the relationship between our proposed layer and the deconvolution layer? And secondly, why are convolutions in low-resolution (LR) space a better choice? These are key questions we tried to answer in the paper, but we were not able to go into as much depth and clarity as we would have liked in the space allowance. To better answer these questions in this note, we first discuss the relationships between the deconvolution layer in the forms of the transposed convolution layer, the sub-pixel convolutional layer and our efficient sub-pixel convolutional layer. We will refer to our efficient sub-pixel convolutional layer as a convolutional layer in LR space to distinguish it from the common sub-pixel convolutional layer. We will then show that for a fixed computational budget and complexity, a network with convolutions exclusively in LR space has more representation power at the same speed than a network that first upsamples the input in high resolution space.

Join the CompressiveSensing subreddit or the Google+ Community or the Facebook page and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

No comments:

Printfriendly