Here are four videos (and paprts) from the Deep Reinforcement workshop at NIPS
Contributed Papers
- Honglak Lee, video; Deep Reinforcement Learning with Predictions
- Juergen Schmidhuber, Reinforcement Learning of Programs in General Purpose Computers with Memory
- Michael Bowling
- Volodymyr Mnih, video: Faster Deep Reinforcement Learning
- Gerry Tesauro, Deep RL and Games Research at IBM
- Osaro, tech talk
- Sergey Levine, Video: Deep Sensorimotor Learning for Robotic Control
- Yoshua Bengio
- Martin Riedmiller, video; Deep RL for Learning Machines
- Jan Koutnik, Compressed Neural Networks for Reinforcement Learning
Contributed Papers
- The importance of experience replay database composition in deep reinforcement learning Tim de Bruin, Jens Kober, Karl Tuyls, Robert Babuška
- Continuous deep-time neural reinforcement learning Davide Zambrano, Pieter R. Roelfsema and Sander M. Bohte
- Memory-based control with recurrent neural networks Nicolas Heess, Jonathan J Hunt, Timothy Lillicrap, David Silver
- How to discount deep reinforcement learning: towards new dynamic strategies Vincent François-Lavet, Raphael Fonteneau, Damien Ernst
- Strategic Dialogue Management via Deep Reinforcement Learning Heriberto Cuayáhuitl, Simon Keizer, Oliver Lemon
- Deep Reinforcement Learning in Parameterized Action Space Matthew Hausknecht, Peter Stone
- Guided Cost Learning: Inverse Optimal Control with Multilayer Neural Networks Chelsea Finn, Sergey Levine, Pieter Abbeel
- Learning Deep Control Policies for Autonomous Aerial Vehicles with MPC-Guided Policy Search Tianhao Zhang, Gregory Kahn, Sergey Levine, Pieter Abbeel
- Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning Emilio Parisotto, Jimmy Lei Ba, Ruslan Salakhutdinov
- Deep Inverse Reinforcement Learning Markus Wulfmeier, Peter Ondruska and Ingmar Posner
- ADAAPT: A Deep Architecture for Adaptive Policy Transfer from Multiple Sources Janarthanan Rajendran, P Prasanna, Balaraman Ravindran, Mitesh Khapra
- Q-Networks for Binary Vector Actions Naoto Yoshida
- The option-critic architecture Pierre-Luc Bacon and Doina Precup
- Learning Deep Neural Network Policies with Continuous Memory States Marvin Zhang, Zoe McCarthy, Chelsea Finn, Sergey Levine, Pieter Abbeel
- Deep Attention Recurrent Q-Network Ivan Sorokin, Alexey Seleznev, Mikhail Pavlov, Aleksandr Fedorov, Anastasiia Ignateva
- Generating Text with Deep Reinforcement Learning Hongyu Guo
- Deep Spatial Autoencoders for Visuomotor Learning Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, Pieter Abbeel
- Data-Efficient Learning of Feedback Policies from Image Pixels using Deep Dynamical Models John-Alexander M. Assael, Niklas Wahlström, Thomas B. Schön, Marc Peter Deisenroth
- One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation and Neural Network Priors Justin Fu, Sergey Levine, Pieter Abbeel
- Learning Visual Models of Physics for Playing Billiards Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, Jitendra Malik
- Conditional computation in neural networks for faster models Emmanuel Bengio, Joelle Pineau, Pierre-Luc Bacon, Doina Precup
- Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models Bradly C. Stadie, Sergey Levine, Pieter Abbeel
- Learning Simple Algorithms from Examples Wojciech Zaremba, Tomas Mikolov, Armand Joulin, Rob Fergus
No comments:
Post a Comment