Friday, July 10, 2015

#ICML2015 codes: Vector-Space Markov Random Fields via Exponential Families - implementation -

This one is from the twitter feed of AI Levity

Vector-Space Markov Random Fields via Exponential Families by Wesley Tansey, Oscar Hernan Madrid Padilla, Arun Sai Suggala, Pradeep Ravikumar

We present Vector-Space Markov Random Fields (VS-MRFs), a novel class of undirected graphical models where each variable can belong to an arbitrary vector space. VS-MRFs generalize a recent line of work on scalar-valued, uni-parameter exponential family and mixed graphical models, thereby greatly broadening the class of exponential families available (e.g., allowing multinomial and Dirichlet distributions). Specifically, VS-MRFs are the joint graphical model distributions where the node-conditional distributions belong to generic exponential families with general vector space domains. We also present a sparsistent M-estimator for learning our class of MRFs that recovers the correct set of edges with high probability. We validate our approach via a set of synthetic data experiments as well as a real-world case study of over four million foods from the popular diet tracking app MyFitnessPal. Our results demonstrate that our algorithm performs well empirically and that VS-MRFs are capable of capturing and highlighting interesting structure in complex, real-world data. All code for our algorithm is open source and publicly available.


Join the CompressiveSensing subreddit or the Google+ Community or the Facebook page and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

No comments: