Thursday, November 03, 2016

Understanding Neural Sparse Coding with Matrix Factorization


All the ICLR 2017 submissions are under open review, here is one that grabbed my attention: Understanding Neural Sparse Coding with Matrix Factorization by Thomas Moreau, Joan Bruna

Sparse coding is a core building block in many data analysis and machine learning pipelines. Typically it is solved by relying on generic optimization techniques, that are optimal in the class of first-order methods for non-smooth, convex functions, such as the Iterative Soft Thresholding Algorithm and its accelerated version (ISTA, FISTA). However, these methods don’t exploit the particular structure of the problem at hand nor the input data distribution. An acceleration using neural networks was proposed in Gregor & Lecun (2010), coined LISTA, which showed empirically that one could achieve high quality estimates with few iterations by modifying the parameters of the proximal splitting appropriately. In this paper we study the reasons for such acceleration. Our mathematical analysis reveals that it is related to a specific matrix factorization of the Gram kernel of the dictionary, which attempts to nearly diagonalise the kernel with a basis that produces a small perturbation of the l`1 ball. When this factorization succeeds, we prove that the resulting splitting algorithm enjoys an improved convergence bound with respect to the non-adaptive version. Moreover, our analysis also shows that conditions for acceleration occur mostly at the beginning of the iterative process, consistent with numerical experiments. We further validate our analysis by showing that on dictionaries where this factorization does not exist, adaptive acceleration fails. 
 
 
 
 
Join the CompressiveSensing subreddit or the Google+ Community or the Facebook page and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

No comments:

Printfriendly