Following up on their paper entitled Full Regularization Path for Sparse Principal Component Analysis, Alexandre d'Aspremont, Francis Bach, Laurent El Ghaoui have produced a new paper where they describe a greedy algorithm to perform their Sparse PCA analysis (as opposed to their previous approach using semidefinite programming). The new paper is: Optimal Solutions for Sparse Principal Component Analysis
the abstract reads:
Given a sample covariance matrix, we examine the problem of maximizing the variance explained by a linear combination of the input variables while constraining the number of nonzero coefficients in this combination. This is known as sparse principal component analysis and has a wide array of applications in machine learning and engineering. We formulate a new semidefinite relaxation to this problem and derive a greedy algorithm that computes a full set of good solutions for all target numbers of non zero coefficients, with total complexity O(n^3), where n is the number of variables. We then use the same relaxation to derive sufficient conditions for global optimality of a solution, which can be tested in O(n^3) per pattern. We discuss applications in subset selection and sparse recovery and show on artificial examples and biological data that our algorithm does provide globally optimal solutions in many cases.
I have set up a search capability on the right side of this blog that uses the new capability for Google search to search through this page and ALL the sites I am linking to. Since I am making an effort at linking to all the researchers involved in Compressed Sensing, searching though this interface enables searching through most websites relevant to this subject.
Photo Credit: NASA, The Earth and the Moon as seen from Galileo en route to Jupiter.
No comments:
Post a Comment