** Nuit Blanche is now on Twitter: @NuitBlog **
With the summer comes the conference and schools. This time around is no exception:
SPARS 2019 is currently going on in Toulouse, here is the list of presentations there. Some folks are tweeting about the event with the #SPARS2019 hashtag.
HDPA-2019 : High dimensional probability and algorithms, is currently taking place here in Paris.
The Theoretical Physics for Deep Learning ICML 2019 Workshop took place June 14th 2019 in Long Beach, CA. Here are all the accepted papers:
- Bayesian Deep Convolutional Networks with Many Channels are Gaussian Processes Roman Novak (Google Brain)*; Lechao Xiao (Google Brain); Jaehoon Lee (Google Brain); Yasaman Bahri (Google Brain); Greg Yang (Microsoft Research AI); Jiri Hron (University of Cambridge); Daniel Abolafia (Google Brain); Jeffrey Pennington (Google Brain); Jascha Sohl-Dickstein (Google Brain)
- Topology of Learning in Artificial Neural Networks Maxime Gabella (Magma Learning)*
- Jet grooming through reinforcement learning Frederic Dreyer (University of Oxford)*; Stefano Carrazza (University of Milan)
- Inferring the quantum density matrix with machine learning Kyle Cranmer (New York University); Siavash Golkar (NYU)*; Duccio Pappadopulo (Bloomberg)
- Backdrop: Stochastic Backpropagation Siavash Golkar (NYU)*; Kyle Cranmer (New York University)
- Explain pathology in Deep Gaussian Process using Chaos Theory Anh Tong (UNIST)*; Jaesik Choi (Ulsan National Institute of Science and Technology)
- Towards a Definition of Disentangled Representations Irina Higgins (DeepMind)*; David Amos (DeepMind); Sebastien Racaniere (DeepMind); David Pfau (DeepMind); Loic Matthey (DeepMind); Danilo Jimenez Rezende (DeepMind); Alexander Lerchner (DeepMind)
- Towards Understanding Regularization in Batch Normalization Ping Luo (The Chinese University of Hong Kong); Xinjiang Wang (); Wenqi Shao (The Chinese University of HongKong)*; Zhanglin Peng (SenseTime)
- Covariance in Physics and Convolutional Neural Networks Miranda Cheng (University of Amsterdam)*; Vassilis Anagiannis (University of Amsterdam); Maurice Weiler (University of Amsterdam); Pim de Haan (University of Amsterdam); Taco S. Cohen (Qualcomm AI Research); Max Welling (University of Amsterdam)
- Meanfield theory of activation functions in Deep Neural Networks Mirco Milletari (Microsoft)*; Thiparat Chotibut (SUTD) ; Paolo E. Trevisanutto (National University of Singapore)
- Finite size corrections for neural network Gaussian processes Joseph M Antognini (Whisper AI)*
- Analysing the dynamics of online learning in over-parameterised two-layer neural networks Sebastian Goldt (Institut de Physique théorique, Paris)*; Madhu Advani (Harvard University); Andrew Saxe (University of Oxford); Florent Krzakala (École Normale Supérieure); Lenka Zdeborova (CEA Saclay)
- A Halo Merger Tree Generation and Evaluation Framework Sandra Robles (Universidad Autónoma de Madrid); Jonathan Gómez (Pontificia Universidad Católica de Chile); Adín Ramírez Rivera (University of Campinas)*; Jenny Gonzáles (Pontificia Universidad Católica de Chile); Nelson Padilla (Pontificia Universidad Católica de Chile); Diego Dujovne (Universidad Diego Portales)
- Learning Symmetries of Classical Integrable Systems Roberto Bondesan (Qualcomm AI Research)*, Austen Lamacraft (Cavendish Laboratory, University of Cambridge, UK)
- Pathological Spectrum of the Fisher Information Matrix in Deep Neural Networks Ryo Karakida (National Institute of Advanced Industrial Science and Technology)*; Shotaro Akaho (AIST); Shun-ichi Amari (RIKEN)
- How Noise during Training Affects the Hessian Spectrum Mingwei Wei (Northwestern University); David Schwab (Facebook AI Research)*
- A Quantum Field Theory of Representation Learning Robert Bamler (University of California at Irvine)*; Stephan Mandt (University of California, Irivine)
- Convergence Properties of Neural Networks on Separable Data Remi Tachet des Combes (Microsoft Research Montreal)*; Mohammad Pezeshki (Mila & University of Montreal); Samira Shabanian (Microsoft, Canada); Aaron Courville (MILA, Université de Montréal); Yoshua Bengio (Mila)
- Universality and Capacity Metrics in Deep Neural Networks Michael Mahoney (University of California, Berkeley)*; Charles Martin (Calculation Consulting)
- Asymptotics of Wide Networks from Feynman Diagrams Guy Gur-Ari (Google)*; Ethan Dyer (Google)
- Deep Learning on the 2-Dimensional Ising Model to Extract the Crossover Region Nicholas Walker (Louisiana State Univ - Baton Rouge)*
- Large Scale Structure of the Loss Landscape of Neural Networks Stanislav Fort (Stanford University)*; Stanislaw Jastrzebski (New York University)
- Momentum Enables Large Batch Training Samuel L Smith (DeepMind)*; Erich Elsen (Google); Soham De (DeepMind)
- Learning the Arrow of Time Nasim Rahaman (University of Heidelberg)*; Steffen Wolf (Heidelberg University); Anirudh Goyal (University of Montreal); Roman Remme (Heidelberg University); Yoshua Bengio (Mila)
- Scale Steerable Filters for Locally Scale-Invariant Convolutional Neural Networks Rohan Ghosh (National University of Singapore)*; Anupam Gupta (National University of Singapore)
- A Mean Field Theory of Quantized Deep Networks: The Quantization-Depth Trade-Off Yaniv Blumenfeld (Technion)*; Dar Gilboa (Columbia University); Daniel Soudry (Technion)
- Rethinking Complexity in Deep Learning: A View from Function Space Aristide Baratin (Mila, Université de Montréal)*; Thomas George (MILA, Université de Montréal); César Laurent (Mila, Université de Montréal); Valentin Thomas (MILA); Guillaume Lajoie (Université de Montréal, Mila); Simon Lacoste-Julien (Mila, Université de Montréal)
- The Deep Learning Limit: Negative Neural Network eigenvalues just noise? Diego Granziol (Oxford)*; Stefan Zohren (University of Oxford); Stephen Roberts (Oxford); Dmitry P Vetrov (Higher School of Economics); Andrew Gordon Wilson (Cornell University); Timur Garipov (Samsung AI Center in Moscow)
- Gradient descent in Gaussian random fields as a toy model for high-dimensional optimisation Mariano Chouza (Tower Research Capital); Stephen Roberts (Oxford); Stefan Zohren (University of Oxford)*
- Deep Learning for Inverse Problems Abhejit Rajagopal (University of California, Santa Barbara)*; Vincent R Radzicki (University of California, Santa Barbara)
Follow @NuitBlog or join the CompressiveSensing Reddit, the Facebook page, the Compressive Sensing group on LinkedIn or the Advanced Matrix Factorization group on LinkedIn
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email.
Other links:
Paris Machine Learning: Meetup.com||@Archives||LinkedIn||Facebook|| @ParisMLGroup< br/> About LightOn: Newsletter ||@LightOnIO|| on LinkedIn || on CrunchBase || our Blog
About myself: LightOn || Google Scholar || LinkedIn ||@IgorCarron ||Homepage||ArXiv
No comments:
Post a Comment