Single-shot diffuser-encoded light field imaging by Nicholas Antipa , Sylvia Necula , Ren Ng , Laura Waller
We capture 4D light field data in a single 2D sensor image by encoding spatio-angular information into a speckle field (causticpattern) through a phase diffuser. Using wave-optics theory and a coherent phase retrieval method, we calibrate the system by measuring the diffuser surface height from through-focus images. Wave-optics theory further informs the design of system geometry such that a purely additive ray-optics model is valid. Light field reconstruction is done using nonlinear matrix inversion methods, including l_1 minimization. We demonstrate a prototype system and present empirical results of 4D light field reconstruction and computational refocusing from a single diffuser-encoded 2D image.
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.
No comments:
Post a Comment