Monday, June 27, 2016

Learning Infinite-Layer Networks: Beyond the Kernel Trick

Infinite--Layer Networks, I like the sound of that.


Learning Infini-te-Layer Networks: Beyond the Kernel Trick by Amir Globerson, Roi Livni

Infinite--Layer Networks (ILN) have recently been proposed as an architecture that mimics neural networks while enjoying some of the advantages of kernel methods. ILN are networks that integrate over infinitely many nodes within a single hidden layer. It has been demonstrated by several authors that the problem of learning ILN can be reduced to the kernel trick, implying that whenever a certain integral can be computed analytically they are efficiently learnable.
In this work we give an online algorithm for ILN, which avoids the kernel trick assumption. More generally and of independent interest, we show that kernel methods in general can be exploited even when the kernel cannot be efficiently computed but can only be estimated via sampling.
We provide a regret analysis for our algorithm, showing that it matches the sample complexity of methods which have access to kernel values. Thus, our method is the first to demonstrate that the kernel trick is not necessary as such, and random features suffice to obtain comparable performance.

 
Join the CompressiveSensing subreddit or the Google+ Community or the Facebook page and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

No comments:

Printfriendly