Shirin Jalali recently made a presentation about compression and compressed sensing. The attendant preprint (featured earlier here) on the subject can be found on ArXiv:
From compression to compressed sensing by Shirin Jalali Arian Maleki. The abstract reads:
Can compression algorithms be employed for recovering signals from their underdetermined set of linear measurements? Addressing this question is the first step towards applying compression algorithms to compressed sensing (CS). In this paper, we consider a family of compression algorithms $\mathcal{C}_R$, parametrized by rate $R$, for a compact class of signals $\mathcal{Q} \subset \mathds{R}^n$. The set of natural images and JPEG2000 at different rates are examples of $\mathcal{Q}$ and $\mathcal{C}_R$, respectively. We establish a connection between the rate-distortion performance of $\mathcal{C}_R$, and the number of linear measurement required for successful recovery in CS. We then propose compressible signal pursuit (CSP) algorithm and prove that, with high probability, it accurately and robustly recovers signals from an underdetermined set of linear measurements. We also explore the performance of CSP in the recovery of infinite dimensional signals. Exploring approximations or simplifications of CSP, which is computationally demanding, is left for the future research.
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.
No comments:
Post a Comment