So OMP solvers are also being DNN-ized.
We consider the classical sparse regression problem of recovering a sparse signal x0 given a measurement vector y=Φx0+w. We propose a tree search algorithm driven by the deep neural network for sparse regression (TSN). TSN improves the signal reconstruction performance of the deep neural network designed for sparse regression by performing a tree search with pruning. It is observed in both noiseless and noisy cases, TSN recovers synthetic and real signals with lower complexity than a conventional tree search and is superior to existing algorithms by a large margin for various types of the sensing matrix Φ, widely used in sparse regression.
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email.
Other links:
Paris Machine Learning: Meetup.com||@Archives||LinkedIn||Facebook|| @ParisMLGroup< br/> About LightOn: Newsletter ||@LightOnIO|| on LinkedIn || on CrunchBase || our Blog
About myself: LightOn || Google Scholar || LinkedIn ||@IgorCarron ||Homepage||ArXiv
No comments:
Post a Comment