Using sparse recovery in network architecture search, there has to be a meta-thread somewhere here !
One-Shot Neural Architecture Search via Compressive Sensing by Minsu Cho, Mohammadreza Soltani, Chinmay Hegde
Neural architecture search (NAS), or automated design of neural network models, remains a very challenging meta-learning problem. Several recent works (called "one-shot" approaches) have focused on dramatically reducing NAS running time by leveraging proxy models that still provide architectures with competitive performance. In our work, we propose a new meta-learning algorithm that we call CoNAS, or Compressive sensing-based Neural Architecture Search. Our approach merges ideas from one-shot approaches with iterative techniques for learning low-degree sparse Boolean polynomial functions. We validate our approach on several standard test datasets, discover novel architectures hitherto unreported, and achieve competitive (or better) results in both performance and search time compared to existing NAS approaches. Further, we support our algorithm with a theoretical analysis, providing upper bounds on the number of measurements needed to perform reliable meta-learning; to our knowledge, these analysis tools are novel to the NAS literature and may be of independent interest.
Follow @NuitBlog or join the CompressiveSensing Reddit, the Facebook page, the Compressive Sensing group on LinkedIn or the Advanced Matrix Factorization group on LinkedIn
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email.
Other links:
Paris Machine Learning: Meetup.com||@Archives||LinkedIn||Facebook|| @ParisMLGroup< br/>
About LightOn: Newsletter ||@LightOnIO|| on LinkedIn || on CrunchBase || our Blog
No comments:
Post a Comment