Pages

Friday, June 28, 2019

Improving Neural Architecture Search Image Classifiers via Ensemble Learning - implementation -

** Nuit Blanche is now on Twitter: @NuitBlog **


AdaNAS is an algorithm for learning an ensemble that improves the performance of neural architecture search models while having a similar parameter count as single large model. Our experiments demonstrate that these ensembles improve accuracy upon a single neural network of the same size. Our models achieve comparable results with the state-of-the-art on CIFAR-10 and set a new state-of-the-art on CIFAR-100.

An implementation is ehre: https://github.com/tensorflow/adanet/tree/master/research/improve_nas


Follow @NuitBlog or join the CompressiveSensing Reddit, the Facebook page, the Compressive Sensing group on LinkedIn  or the Advanced Matrix Factorization group on LinkedIn

Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email.

Other links:
Paris Machine LearningMeetup.com||@Archives||LinkedIn||Facebook|| @ParisMLGroup< br/> About LightOnNewsletter ||@LightOnIO|| on LinkedIn || on CrunchBase || our Blog
About myselfLightOn || Google Scholar || LinkedIn ||@IgorCarron ||Homepage||ArXiv

No comments:

Post a Comment