As mentioned for a while now, compressive sensing's Achille's heel is related to how slow reconstruction solvers are (see Sunday Morning Insight: Faster Than a Blink of an Eye). The following paper attempts to use the techniques of deep neural networks to learning the transformation we generally associate with reconstruction solvers in a scheme called 'Learning to invert'. I like the sound of that great convergence in action !
Learning to Invert: Signal Recovery via Deep Convolutional Networks by Ali Mousavi, Richard G. Baraniuk
The promise of compressive sensing (CS) has been offset by two significant challenges. First, real-world data is not exactly sparse in a fixed basis. Second, current high-performance recovery algorithms are slow to converge, which limits CS to either non-real-time applications or scenarios where massive back-end computing is available. In this paper, we attack both of these challenges head-on by developing a new signal recovery framework we call {\em DeepInverse} that learns the inverse transformation from measurement vectors to signals using a {\em deep convolutional network}. When trained on a set of representative images, the network learns both a representation for the signals (addressing challenge one) and an inverse map approximating a greedy or convex recovery algorithm (addressing challenge two). Our experiments indicate that the DeepInverse network closely approximates the solution produced by state-of-the-art CS recovery algorithms yet is hundreds of times faster in run time. The tradeoff for the ultrafast run time is a computationally intensive, off-line training procedure typical to deep networks. However, the training needs to be completed only once, which makes the approach attractive for a host of sparse recovery problems.
Join the CompressiveSensing subreddit or the Google+ Community or the Facebook page and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.
No comments:
Post a Comment