Pages

Monday, September 12, 2016

Convexified Convolutional Neural Networks

Using Random Features to speed up the gradient descent steps, I like it.


Convexified Convolutional Neural Networks by Yuchen Zhang, Percy Liang, Martin J. Wainwright

We describe the class of convexified convolutional neural networks (CCNNs), which capture the parameter sharing of convolutional neural networks in a convex manner. By representing the nonlinear convolutional filters as vectors in a reproducing kernel Hilbert space, the CNN parameters can be represented as a low-rank matrix, which can be relaxed to obtain a convex optimization problem. For learning two-layer convolutional neural networks, we prove that the generalization error obtained by a convexified CNN converges to that of the best possible CNN. For learning deeper networks, we train CCNNs in a layer-wise manner. Empirically, CCNNs achieve performance competitive with CNNs trained by backpropagation, SVMs, fully-connected neural networks, stacked denoising auto-encoders, and other baseline methods.


Join the CompressiveSensing subreddit or the Google+ Community or the Facebook page and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

No comments:

Post a Comment