Pages

Thursday, September 29, 2016

Coherence Pursuit: Fast, Simple, and Robust Principal Component Analysis

  Interesting that such a simple algorithm could do the job:


Coherence Pursuit: Fast, Simple, and Robust Principal Component Analysis by Mostafa Rahmani, George Atia

This paper presents a remarkably simple, yet powerful, algorithm for robust Principal Component Analysis (PCA). In the proposed approach, an outlier is set apart from an inlier by comparing their coherence with the rest of the data points. As inliers lie on a low dimensional subspace, they are likely to have strong mutual coherence provided there are enough inliers. By contrast, outliers do not typically admit low dimensional structures, wherefore an outlier is unlikely to bear strong resemblance with a large number of data points. The mutual coherences are computed by forming the Gram matrix of normalized data points. Subsequently, the subspace is recovered from the span of a small subset of the data points that exhibit strong coherence with the rest of the data. As coherence pursuit only involves one simple matrix multiplication, it is significantly faster than the state of-the-art robust PCA algorithms. We provide a mathematical analysis of the proposed algorithm under a random model for the distribution of the inliers and outliers. It is shown that the proposed method can recover the correct subspace even if the data is predominantly outliers. To the best of our knowledge, this is the first provable robust PCA algorithm that is simultaneously non-iterative, can tolerate a large number of outliers and is robust to linearly dependent outliers
 
 
 
 
Join the CompressiveSensing subreddit or the Google+ Community or the Facebook page and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

No comments:

Post a Comment