Pages

Friday, July 22, 2016

Fifty Shades of Ratings: How to Benefit from a Negative Feedback in Top-N Recommendations Tasks - implementation -



Ivan, the person behind the Tensor Train tensor decomposition just sent me the following:


Dear Igor,  
I have a new interesting paper to share. " Fifty Shades of Ratings: How to Benefit from a Negative Feedback in Top-N Recommendations Tasks"
http://arxiv.org/abs/1607.04228
(accepted at ACM RecSys 2016).
A framework is also available: https://github.com/Evfro/polaraThe key idea is to introduce a tensor from user-item-rating, thus being able to recommend even from a negative feedback.

With best wishes,
Ivan.

Thanks Ivan !


Fifty Shades of Ratings: How to Benefit from a Negative Feedback in Top-N Recommendations Tasks by Evgeny Frolov, Ivan Oseledets
Conventional collaborative filtering techniques treat a top-n recommendations problem as a task of generating a list of the most relevant items. This formulation, however, disregards an opposite - avoiding recommendations with completely irrelevant items. Due to that bias, standard algorithms, as well as commonly used evaluation metrics, become insensitive to negative feedback. In order to resolve this problem we propose to treat user feedback as a categorical variable and model it with users and items in a ternary way. We employ a third-order tensor factorization technique and implement a higher order folding-in method to support online recommendations. The method is equally sensitive to entire spectrum of user ratings and is able to accurately predict relevant items even from a negative only feedback. Our method may partially eliminate the need for complicated rating elicitation process as it provides means for personalized recommendations from the very beginning of an interaction with a recommender system. We also propose a modification of standard metrics which helps to reveal unwanted biases and account for sensitivity to a negative feedback. Our model achieves state-of-the-art quality in standard recommendation tasks while significantly outperforming other methods in the cold-start "no-positive-feedback" scenarios.


Join the CompressiveSensing subreddit or the Google+ Community or the Facebook page and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

No comments:

Post a Comment