Pages

Thursday, June 14, 2012

Poisson noise reduction with non-local PCA -implementation-



Abstract Photon-limited imaging, which arises in applications such as spectral imaging, night vision, nuclear medicine, and astronomy, occurs when the number of photons collected by a sensor is small relative to the desired image resolution. Typically a Poisson distribution is used to model these observations, and the inherent heteroscedasticity of the data combined with standard noise removal methods yields significant artifacts. This paper introduces a novel denoising algorithm for photon-limited images which combines elements of dictionary learning and sparse representations for image patches. The method employs both an adaptation of Principal Component Analysis (PCA) for Poisson noise and recently developed sparsity regularized convex optimization algorithms for photon-limited images. A comprehensive empirical evaluation of the proposed method helps characterize the performance of this approach relative to other state-of-the-art denoising methods. The results reveal that, despite its simplicity, PCA-flavored denoising appears to be highly competitive in very low light regimes.
An implementation of the Poisson noise reduction with Non-Local PCA (NLPCA) is here



Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

No comments:

Post a Comment