Friday, January 23, 2015

New Ranks for Even-Order Tensors and Their Applications in Low-Rank Tensor Optimization

Videos are fourth order tensors that have much information. The following paper shows how much of it through Low rank Tensor reconstruction. Woohoo !

New Ranks for Even-Order Tensors and Their Applications in Low-Rank Tensor Optimization by Bo Jiang, Shiqian Ma, Shuzhong Zhang

In this paper, we propose three new tensor decompositions for even-order tensors corresponding respectively to the rank-one decompositions of some unfolded matrices. Consequently such new decompositions lead to three new notions of (even-order) tensor ranks, to be called the M-rank, the symmetric M-rank, and the strongly symmetric M-rank in this paper. We discuss the bounds between these new tensor ranks and the CP(CANDECOMP/PARAFAC)-rank and the symmetric CP-rank of an even-order tensor. In particular, we show: (1) these newly defined ranks actually coincide with each other if the even-order tensor in question is super-symmetric; (2) the CP-rank and symmetric CP-rank for a fourth-order tensor can be both lower and upper bounded (up to a constant factor) by the corresponding M-rank. Since the M-rank is much easier to compute than the CP-rank, we can replace the CP-rank by the M-rank in the low-CP-rank tensor recovery model. Numerical results on both synthetic data and real data from colored video completion and decomposition problems show that the M-rank is indeed an effective and easy computable approximation of the CP-rank in the context of low-rank tensor recovery.
Join the CompressiveSensing subreddit or the Google+ Community and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

No comments: