Thursday, February 13, 2014

Signal to Noise Ratio in Lensless Compressive Imaging / Compressive and Adaptive Millimeter-wave SAR / Efficient Low Dose X-ray CT Reconstruction

It's been a while, at long last, some CS hardware and hardware/algorithm related papers :

Signal to Noise Ratio in Lensless Compressive Imaging by Hong Jiang, Gang Huang, Paul Wilford
We analyze the signal to noise ratio (SNR) in a lensless compressive imaging (LCI) architecture. The architecture consists of a sensor of a single detecting element and an aperture assembly of an array of programmable elements. LCI can be used in conjunction with compressive sensing to capture images in a compressed form of compressive measurements. In this paper, we perform SNR analysis of the LCI and compare it with imaging with a pinhole or a lens. We will show that the SNR in the LCI is independent of the image resolution, while the SNR in either pinhole aperture imaging or lens aperture imaging decreases as the image resolution increases. Consequently, the SNR in the LCI is much higher if the image resolution is large enough.

We apply adaptive sensing techniques to the problem of locating sparse metallic scatterers using high-resolution, frequency modulated continuous wave W-band RADAR. Using a single detector, a frequency stepped source, and a lateral translation stage, inverse synthetic aperture RADAR reconstruction techniques are used to search for one or two wire scatterers within a specified range, while an adaptive algorithm determined successive sampling locations. The two-dimensional location of each scatterer is thereby identified with sub-wavelength accuracy in as few as 1/4 the number of lateral steps required for a simple raster scan. The implications of applying this approach to more complex scattering geometries are explored in light of the various assumptions made.

Efficient Low Dose X-ray CT Reconstruction through Sparsity-Based MAP Modeling by SayedMasoud Hashemi, Soosan Beheshti, Patrick R. Gill, Narinder S. Paul, Richard S.C. Cobbold

Ultra low radiation dose in X-ray Computed Tomography (CT) is an important clinical objective in order to minimize the risk of carcinogenesis. Compressed Sensing (CS) enables significant reductions in radiation dose to be achieved by producing diagnostic images from a limited number of CT projections. However, the excessive computation time that conventional CS-based CT reconstruction typically requires has limited clinical implementation. In this paper, we first demonstrate that a thorough analysis of CT reconstruction through a Maximum a Posteriori objective function results in a weighted compressive sensing problem. This analysis enables us to formulate a low dose fan beam and helical cone beam CT reconstruction. Subsequently, we provide an efficient solution to the formulated CS problem based on a Fast Composite Splitting Algorithm-Latent Expected Maximization (FCSA-LEM) algorithm. In the proposed method we use pseudo polar Fourier transform as the measurement matrix in order to decrease the computational complexity; and rebinning of the projections to parallel rays in order to extend its application to fan beam and helical cone beam scans. The weight involved in the proposed weighted CS model, denoted by Error Adaptation Weight (EAW), is calculated based on the statistical characteristics of CT reconstruction and is a function of Poisson measurement noise and rebinning interpolation error. Simulation results show that low computational complexity of the proposed method made the fast recovery of the CT images possible and using EAW reduces the reconstruction error by one order of magnitude. Recovery of a high quality 512× 512 image was achieved in less than 20 sec on a desktop computer without numerical optimizations.

Join the CompressiveSensing subreddit or the Google+ Community and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

No comments: