Thursday, April 25, 2013

Robust error correction for real-valued signals via message-passing decoding and spatial coupling

So we now have some use of the magic seeded matrices for error correcting codes:

We revisit the error correction scheme of real-valued signals when the codeword is corrupted by gross errors on a fraction of entries and a small noise on all the entries. Combining the recent developments of approximate message passing and the spatially-coupled measurement matrix in compressed sensing we show that the error correction and its robustness towards noise can be enhanced considerably. We discuss the performance in the large signal limit using previous results on state evolution, as well as for finite size signals through numerical simulations. Even for relatively small sizes, the approach proposed here outperforms convex-relaxation-based decoders.
The ASPICS solver with the attendant seeded matrices is located at:

Join the CompressiveSensing subreddit or the Google+ Community and post there !
Liked this entry ? subscribe to Nuit Blanche's feed, there's more where that came from. You can also subscribe to Nuit Blanche by Email, explore the Big Picture in Compressive Sensing or the Matrix Factorization Jungle and join the conversations on compressive sensing, advanced matrix factorization and calibration issues on Linkedin.

No comments: